Recherche > Terme de recherche: "Escherichia coli O157"


Noms communs pour les solutions d'acide hypochloreux


  • Electrolytically Generated Hypochlorous Acid
  • Neutral Electrolyzed Water (NEW)
  • Electrolyzed Oxidizing Water (EOW)
  • Electro-chemically Activated Water (ECA)
  • Super-oxidized water (SOW)


Résultats: 61 articles publiés


Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The effects of low-concentration electrolysed water (LcEW) (4 mg/L free available chlorine) combined with mild heat on the safety and quality of fresh organic broccoli (Brassica oleracea) were evaluated. Treatment with LcEW combined with mild heat (50 C) achieved the highest reduction in naturally occurring microorganisms and pathogens, including inoculated Escherichia coli O157:H7 and Listeria monocytogenes (P < 0.05). In terms of the antioxidant content of the treated broccoli, the total phenolic levels and ferric reducing antioxidant power remained unchanged however, the oxygen radical absorbance capacity of the treated broccoli was higher than that of the untreated control. In addition, mild heat treatment resulted in an increase in firmness. The increased firmness was attributed to changes in the pectin structure, including the assembly and dynamics of pectin. The results revealed that mild heat induced an antiparallel orientation and spontaneous aggregation of the pectin chains. This study demonstrated that LcEW combined with mild heat treatment was effective to reduce microbial counts on fresh organic broccoli without compromising the product quality.



Journal Cover

Microbe(s): Total Microbial Count


Electrolyzed water (EW) is known by its bactericidal efficacy and capability to oxidize organic matter. The present research evaluated the efficacy of recently developed electrolytic cells able to generate higher concentration of reactive oxygen species using lower power and salt concentration than conventional cells. This study tested the inactivation of Escherichia coli O157:H7, the organic matter depletion and trihalomethane (THM) generation by EW in process wash water under dynamic conditions. To achieve this, clean tap water was continuously added up to 60 min with artificial process water with high chemical oxygen demand (COD) inoculated with E. coli O157:H7, in experiments performed in a pilot plant that recirculated water through one electrolytic cell. Plate counts of E. coli O157:H7, COD, THMs, free, combined and total chlorine, pH, temperature and oxidation-reduction potential were determined. Results indicate that the novel electrolysis system combined with minimal addition of NaCl (0.05) was able to suppress E. coli O157:H7 population build-up and decreased the COD accumulation in the process wash water. THM levels in the water were relatively high but its concentration in the washed product was marginal. Highly effective electrolysis has been proven to reduce the occurrence of foodborne diseases associated to cross-contamination in produce washers without having an accumulation of THMs in the washed product.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella Typhimurium


Automated produce washers can be a useful processing aid when treating fresh produce contaminated with pathogens. The of near neutral pH electrolyzed (NEO) water as a wash or sanitizing solution has been shown to lead to significant reductions of Escherichia coli O157:H7 and Salmonella on fresh produce. To further enhance reported pathogen reductions, the effects of a combined NEO water (155 mg/L free chlorine, pH 6.5) and ultrasound wash protocol on lettuce and tomatoes inoculated with E. coli O157:H7 and S. Typhimurium DT 104 were studied. The effects of the pH of NEO water and washer agitation on pathogen reductions were also assessed. Inoculated tomatoes and lettuce leaves were treated with either chilled deionized water or NEO water, with or without 20 kHz ultrasound (130 W and 210 W). Tomatoes were treated for 1, 3 and 5 min while lettuce was treated for 5, 10 and 15 min. Ultrasound significantly increased the oxidation-reduction potential (ORP) of NEO water (p < 0.05) but did not affect the pH and free chlorine concentration (p > 0.05). Increased washing time and higher ultrasonic power led to significantly greater reductions of both pathogens on produce items (p < 0.05). NEO water combined with 210 W ultrasonication for 15 min led to 4.4 and 4.3 log reductions of E. coli O157:H7 and S. Typhimurium on lettuce, respectively, while 210 W ultrasound for 5 min completely inactivated both pathogens on tomatoes. Both pathogens were completely inactivated in NEO water solutions, suggesting that its presents little chance of cross-contamination.



Journal Cover

Microbe(s): Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella sp.


Electrolyzed water generators are readily available in the food industry as a renewable source of hypochlorous acid that eliminates the need for workers to handle hazardous hypochlorite concentrates. We applied electrolyzed water (EW) directly to multi-strain cocktails of Listeria monocytogenes, E. coli O157:H7, and Salmonella sp. at 250 ppm free available chlorine (FAC) and achieved greater than 6-log reductions in 2 min. Lower EW values were examined as antimicrobial interventions for fresh meat (beef carcasses), processed meats (frankfurters), and food contact surfaces (slicing blades). Little or no reduction relative to controls was observed when generic E. coli-inoculated beef carcasses or L. monocytogenes-inoculated frankfurters were showered with EW. Spray application of EW (25 and 250-ppm FAC) onto L. monocytogenes-inoculated slicing blades showed that greater reductions were obtained with clean (3.6 and 5.7-log reduction) vs. dirty (0.6 and 3.3-log reduction) slicing blades, respectively. Trials with L. monocytogenes-inoculated protein-EW solutions demonstrated that protein content as low as 0.1% is capable of eliminating FAC, reducing antimicrobial activity against L. monocytogenes. EW appears better positioned as a surface sanitizer with minimal organic material that can otherwise act as an effective reducing agent to the oxidizing solution rendering it ineffective.



Journal Cover

Microbe(s): Bacillus subtilis, Escherichia coli O157: H7


This study discussed the effects of different bacterial concentrations and centrifugations on the antimicrobial efficacy of electrolyzed oxidizing (EO) water on Bacillus subtilis and Escherichia coli O157:H7. Overnight grown bacterial cultures were centrifuged 1 to 3 times and bacterial concentrations were adjusted to approximately 9 (high), 7 (medium), or 5 (low) log10 CFU/mL. Antimicrobial efficacy of acidic EO water (AEW) and neutral pH EO water (NEW) containing 0.2530 mg/L available chlorine was determined. In order to ascertain the effects of AEW and NEW on targeted pathogens, cellular properties at bio-molecular levels were also studied. The results showed that the susceptibility of both pathogens decreased significantly with increasing bacterial concentrations. AEW with 10, 0.25 and 0.25 mg/L and NEW with 30, 0.5 and 0.25 mg/L available chlorine were needed for high, medium and low bacterial concentrations, respectively to non-detectable levels by direct plating for E. coli O157:H7. B. subtilis was found more resistant to both EO water treatments and only 4.1 and 3.8 log reductions were achieved for AEW and NEW containing 30 mg/L available chlorine. On the other hand, it was observed that as centrifugation time increased, both bacteria became significantly more sensitive to EO water treatments. When centrifugation period increased from 1 to 3 times, additional 2.67 and 3.38 log E. coli O157:H7 reductions were observed for AEW and NEW treatments, respectively. A similar trend was observed for B. subtilis. DNA and protein leakage increased when pathogens were treated by AEW and NEW with increasing available chlorine concentration, but decreased DNA and protein leakage were observed with increased centrifugation times. These results indicate that initial bacterial concentration and the centrifugation time are two important factors and should be carefully considered in chlorine-based antimicrobial efficacy testing.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella Typhimurium


The objective of this study was to determine the efficacy of neutral pH electrolyzed (NEO) water (155 mg/L free chlorine, pH 7.5) in reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on romaine lettuce, iceberg lettuce, and tomatoes washed in an automated produce washer for different times and washing speeds. Tomatoes and lettuce leaves were spot inoculated with 100 L of a 5 strain cocktail mixture of either pathogen and washed with 10 or 8 L of NEO water, respectively. Washing lettuce for 30 min at 65 rpm led to the greatest reductions, with 4.2 and 5.9 log CFU/g reductions achieved for E. coli O157:H7 and S. Typhimurium respectively on romaine, whereas iceberg lettuce reductions were 3.2 and 4.6 log CFU/g for E. coli O157:H7 and S. Typhimurium respectively. Washing tomatoes for 10 min at 65 rpm achieved reductions greater than 8 and 6 log CFU/tomato on S. Typhimurium and E. coli O157:H7 respectively. All pathogens were completely inactivated in NEO water wash solutions. No detrimental effects on the visual quality of the produce studied were observed under all treatment conditions. Results show the adoption of this washing procedure in food service operations could be useful in ensuring produce safety.



Journal Cover

Microbe(s): Total Microbial Count, Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas spp., Fungi, Yeast


This study evaluated the efficacy of individual treatments (thermosonication [TS+DW] and slightly acidic electrolyzed water [SAcEW]) and their combination on reducing Escherichia coli O157:H7, Listeria monocytogenes, and spoilage microorganisms (total bacterial counts [TBC], Enterobacteriaceae, Pseudomonas spp., and yeast and mold counts [YMC]) on fresh-cut kale. For comparison, the antimicrobial efficacies of sodium chlorite (SC; 100 mg/L) and sodium hypochlorite (SH; 100 mg/L) were also evaluated. Each 10 g sample of kale leaves was inoculated to contain approximately 6 log CFU/g of E. coli O157:H7 or L. monocytogenes. Each inoculated or uninoculated samples was then dip treated with deionized water (DW; control), TS+DW, and SAcEW at various treatment conditions (temperature, physicochemical properties, and time) to assess the efficacy of each individual treatment. The efficacy of TS+DW or SAcEW was enhanced at 40 C for 3 min, with an acoustic energy density of 400 W/L for TS+DW and available chlorine concentration of 5 mg/L for SAcEW. At 40 C for 3 min, combined treatment of thermosonication 400 W/L and SAcEW 5 mg/L (TS+SAcEW) was more effective in reducing microorganisms compared to the individual treatments (SAcEW, SC, SH, and TS+DW) and combined treatments (TS+SC and TS+SH), which significantly (P < 0.05) reduced E. coli O157:H7, L. monocytogenes, TBC, Enterobacteriaceae, Pseudomonas spp., and YMC by 3.32, 3.11, 3.97, 3.66, 3.62, and >3.24 log CFU/g, respectively. The results suggest that the combined treatment of TS+SAcEW has the potential as a decontamination process in fresh-cut industry.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, and Salmonella Typhimurium


This study evaluated the efficacy of the individual treatments (slightly acidic electrolyzed water [SAcEW] or fumaric acid [FA]) and their combination to reduce Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, and Salmonella Typhimurium in fresh pork as well as to study the shelf life and sensory quality (color, odor, and texture) of pork during storage at 4 and 10 C. The inoculated pork samples (10 g) were dipped for 3 min in each treatment (tap water [TW], SAcEW, strong acidic electrolyzed water [StAEW], 0.5% FA, or SAcEW + 0.5% FA) with or without mild heat (40 C). Decontamination of fresh pork with SAcEW +0.5% FA at 40 C for 3 min showed greater bactericidal effect compared to other treatments, which significantly (P < 0.05) reduced E. coli O157:H7, L. monocytogenes, S. aureus, and S. Typhimurium by 2.59, 2.69, 2.38, and 2.99 log CFU/g, respectively. This combined treatment significantly (P < 0.05) yielded in a longer lag time of naturally occurring bacteria (TBC) on pork stored at 4 C. This combined treatment also prolonged the shelf life of pork up to 6 days and 4 5 days when stored at 4 C and 10 C, respectively, compared to those of the untreated pork. The results suggest that the combined treatment of SAcEW + 0.5% FA has potential as a novel method to enhance the microbial safety and quality of fresh pork.



Journal Cover

Microbe(s): Escherichia coli O157:H7


Water can be a vector for foodborne pathogen cross-contamination during washing of vegetables if an efficient method of water disinfection is not used. Chlorination is the disinfection method most widely used, but it generates disinfection by-products such as trihalomethanes (THMs). Therefore, alternative disinfection methods are sought. In this study, a dynamic system was used to simulate the commercial conditions of a washing tank. Organic matter and the inoculum of Escherichia coli O157:H7 were progressively added to the wash water in the washing tank. We evaluated the effectiveness of the electrolyzed water (EW) when combining with the addition of salt (1, 0.5 and 0.15 g/L NaCl) on the pathogenic inactivation, organic matter depletion and THM generation. Results indicated that electrolysis of vegetable wash water with addition of salt (0.5 g/L NaCl) was able to eliminate E. coli O157:H7 population build-up and decrease COD accumulation while low levels of THMs were produced.



Journal Cover

Microbe(s): Escherichia coli O157:H7 Salmonella Typhimurium, Listeria monocytogenes


The bactericidal efficacy of acidic electrolyzed oxidizing water (AC-EW) (pH = 2.30, free chlorine = 38 ppm) and sterile distilled water (DW) on three pathogens (Escherichia coli O157:H7 Salmonella Typhimurium, and Listeria monocytogenes) inoculated on raw trout skin, chicken legs and beef meat surfaces was evaluated. The decontaminating effect of AC-EW and DW was tested for 0 (control), 1, 3, 5 and 10 min at 22 C. AC-EW significantly (P < 0.05) reduced the three pathogens in the inoculated samples compared to the control and DW. The level of reduction ranged between ca.1.5 1.6 logs for E. coli O157:H7 and S. Typhimurium in the inoculated foods. However, AC-EW exhibited less bactericidal effect against L. monocytogenes (1.1 1.3 logs reduction). AC-EW elicited about 1.6 2.0 log reduction in the total mesophilic count. Similar treatment with DW reduced pathogens load by ca. 0.2 1.0 log reduction and total mesophiles by ca. 0.5 0.7 logs. No complete elimination of the three pathogens was obtained using AC-EW possibly because of the level of organic matter and blood moving from food samples to the AC-EW solution. This study demonstrates that AC-EW could considerably reduce common foodborne pathogens in fish, chicken and beef products.



Journal Cover

Microbe(s): Escherichia coli O157:H7


The purpose of this study was to evaluate and model the growth of Escherichia coli O157:H7 in fresh-cut lettuce submitted to a neutral electrolyzed water (NEW) treatment, packaged in passive modified atmosphere and subsequently stored at different temperatures (4, 8, 13, 16 C) for a maximum of 27 days. Results indicated that E. coli O157:H7 was able to grow at 8, 13, and 16 C, and declined at 4 C. However at 8 C, the lag time lasted 19 days, above the typical shelf-life time for this type of products. A secondary model predicting growth rate as a function of temperature was developed based on a square-root function. A comparison with literature data indicated that the growth predicted by the model for E. coli O157:H7 was again lower than those observed with other disinfection treatments or packaging conditions (chlorinated water, untreated product, NEW, etc.). The specific models here developed might be applied to predict growth in products treated with NEW and to improve existing quantitative risk assessments.



Journal Cover

Microbe(s): Escherichia coli O157:H7


This study was conducted to investigate the disinfection efficacy of hurdle treatments (thermosonication plus slightly acidic electrolyzed water [SAcEW]) and to develop a model for describing the effect of storage temperatures (4, 10, 15, 20, 25, 30, and 35 C) on the growth of Escherichia coli O157:H7 on fresh-cut kale treated with or without (control) thermosonication combined with SAcEW. The hurdle treatments of thermosonication plus SAcEW had strong bactericidal effects against E. coli O157:H7 on kale, with approximately 3.3-log reductions. A modified Gompertz model was used to describe growth parameters such as specific growth rate (SGR) and lag time (LT) as a function of storage temperature, with high coefficients of determination (R2 > 0.98). SGR increased and LT declined with rising temperatures in all samples. A significant difference was found between the SGR values obtained from treated and untreated samples. Secondary models were established for SGR and LT to evaluate the effects of storage temperature on the growth kinetics of E. coli O157:H7 in treated and untreated kale. Statistical evaluation was carried out to validate the performance of the developed models, based on the additional experimental data not used for the model development. The validation step indicated that the overall predictions were inside the acceptable prediction zone and had lower standard errors, indicating that this new growth model can be used to assess the risk of E. coli O157:H7 contamination on kale.



Journal Cover

Microbe(s): Salmonella enteritidis, Escherichia coli O157:H7 and Staphylococcus aureus


The efficacy of slightly acidic electrolyzed water (SAEW) to inactivate foodborne pathogens and indigenous microbiota on shell eggs was evaluated and compared to chlorine dioxide (CD), acidic electrolyzed water (AEW) and NaClO solution. The eggs were artificially inoculated with S. enteritidis, E. coli O157:H7 and S. aureus and sprayed or immersed with SAEW, alkaline electrolyzed water (AlEW) followed by SAEW (AlEWSAEW), CD, AEW and NaClO solution, respectively. The effect of SAEW on the natural microbiota of shell eggs was also determined. Spraying shell eggs with SAEW, CD and NaClO solution at an ACC of 60 mg/L had no significant bactericidal difference for foodborne pathogens and indigenous microbiota on shell eggs, and the difference of disinfection effect between SAEW and AEW was not significant, whereas the bactericidal activity of SAEW for E. coli O157:H7, S. aureus, total aerobic bacteria and moulds and yeasts was significantly higher than that of CD and NaClO solution at ACCs of 80 or 100 mg/L. SAEW was found to be more effective when used in conjunction with AlEW, and higher reductions were obtained with the immersion treatment. Results indicate that the disinfectant efficiency of SAEW is equivalent to or higher than that of chlorine dioxide and NaClO solution and therefore SAEW shows the potential to be used for sanitization of egg shells as an environmentally friendly disinfection agent.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


Slightly acidic electrolyzed water (SAEW) is well known as a good sanitizer against foodborne pathogens on fresh vegetables. However, microbial reductions from SAEW treatment are not enough to ensure produce safety. Therefore, it is necessary to improve its antimicrobial efficiency by combining it with other appropriate approaches. This study examined the microbicidal activity of SAEW (pH 5.2-5.5, oxidation reduction potential 500-600 mV, available chlorine concentration 21-22 mg/l) on Chinese cabbage, lettuce, sesame leaf and spinach, four common fresh vegetables in Korea under same laboratory conditions. Subsequently, effects of ultrasonication and water wash to enhance the sanitizing efficacy of SAEW were studied, separately. Finally, an optimized simple and easy approach consisting of simultaneous SAEW treatment with ultrasonication (3 min) followed by water wash (150 rpm, 1 min) was developed (SAEW + US-WW). This newly developed hurdle treatment significantly enhanced the microbial reductions compared to SAEW treatment alone, SAEW treatment with ultrasonication (SAEW + US) and SAEW treatment followed by water wash (SAEW-WW) at room temperature (23 2 C). Microbial reductions of yeasts and molds, total bacteria count and inoculated Escherichia coli O157:H7 and Listeria monocytogenes were in the range of 1.76-2.8 log cfu/g on different samples using the new hurdle approach.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The effects of hardness and pH of water used to prepare electrolyzed oxidizing (EO) water and bleach solutions on the bactericidal activity of sanitizer prepared from the water were examined. EO water and bleach solutions were prepared with hard water of 0, 50, 100, and 200 mg/l as CaCO3 at pH 5, 6, 7, and 8. Increased water hardness tended to increase free chlorine and oxidation-reduction potential (ORP) and decrease pH of EO water. Chlorine levels also increased with water pH. Water hardness and pH only had minor effect on the pH of bleach solutions. Increasing hardness to 50 mg/l increased antimicrobial effect of EO water against Escherichia coli O157:H7, but reduced when water hardness further increased to 100 mg/l or higher. Water pH had no effect on EO water produced against E. coli O157:H7. Water hardness had no significant effect on bactericidal activity of EO water against Listeria monocytogenes but elevated water pH decreased bactericidal activity of EO water produced against L. monocytogenes. Bleach solution prepared using hard water at 200 mg/l or at pH 7 or higher had significant lower efficacy in inactivating E. coli O157:H7, but had no effect on the inactivation of L. monocytogenes. Results indicate that increasing the hardness or pH of water used to prepare EO water or bleach solutions will decrease the bactericidal activity of sanitizers prepared from the water.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enterica, Listeria monocytogenes


Electrochemically activated water (ECAW), also known as electrolyzed water, and ozonized water are typically effective in inactivating bacteria, but their generation typically uses high current and voltage. A few simpler antimicrobial technologies that are also based on the application of a mild electrical current have been recently marketed to food retail and service customers claiming to have sanitizing properties for controlling bacteria. The objective of this study was to determine the sanitizing effect of some of these commercial technologies on Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica and compare them with sterile water, generated ECAW generated with a pilot size electrolyzing unit, and salt solutions sprayed using commercial device sprays. A concentration of 100 mg/L ECAW had sanitizing effects of at least 5 log CFU/mL reductions on liquid culture and more than 4 log CFU/coupon reductions for E. coli O157:H7, L. monocytogenes and Salmonella dried on stainless steel surface, respectively. No bacterial cells were detected by direct plate counting post-ECAW treatment. In contrast, the treatment of liquid cultures with any of the commercial technologies tested resulted in non-significant bacterial cell reductions greater than 0.5 log CFU/mL. Similarly, when cells had been dried on metal surfaces and treated with any of the water generated with those technologies, no reductions were observed. When the manufacturer s instructions were followed, the reduction of cells on surface was largely due to the physical removal by cloth-wiping after water fraction application. These results indicate that treatment with any of these portable technologies had no noticeable antimicrobial activity. These results would be helpful for guiding consumers when choosing a right sanitization to ensure food safety.



Journal Cover

Microbe(s): Escherichia coli O157:H7


Effect of ultrasonication (40 kHz) to enhance low concentration electrolyzed water (LcEW) efficacy for microbial decontamination on lettuce leaves was investigated. Lettuce was separately treated with LcEW, ultrasonication, LcEW combined with ultrasonication, LcEW followed by ultrasonication, and ultrasonication followed by LcEW for 1, 3, and 5 min for each step at room temperature. The highest reduction (2.3 log CFU/g) in total bacteria count (TBC) was resulted from ultrasonication followed by LcEW. Subsequently, the effect of temperature was studied resulting in 2.6 and 3.18 log CFU/g reduction of TBC and Escherichia coli O157:H7 respectively, in 3 min ultrasonication followed by 3 min LcEW treatment at 40 C. This optimum treatment also prevented lettuce from reaching 7.0 log CFU/g in TBC until the end of the 6 day storage at 10 C. Therefore, this newly developed approach may result in improved microbiological safety and enhanced shelf life of produce.



Journal Cover

Microbe(s): Escherichia coli O157:H7


The effect of operating conditions (current density, recirculation flow rate and electrode doping level) on the efficacy of boron-doped diamond (BDD) electrodes to inactivate microorganisms and decrease chemical oxygen demand (COD) was studied in lettuce process wash water with a COD of 725 mg/L and inoculated with a 5-strain cocktail of Escherichia coli O157:H7. Changes in pathogen population, COD, pH, temperature, redox potential, and free and total chlorine were monitored in process wash water during treatments. Considering the specific characteristics of the washing step included in the fresh-cut processing, the disinfection of process wash water should be of fast action. A biphasic with a shoulder model was used to estimate shoulder length (Sl), log-linear inactivation rates (kmax1,kmax2), lowest population (Nf) and highest log reduction (HLR). Current density clearly influenced Sl, and kmax2; recirculation flow rate influenced Sl, kmax1,kmax2 and COD depletion; and doping level influenced Nf. No relationship was observed between inactivation parameters and chlorine concentration. Conditions including high current density (180 mA/cm2), high flow rate (750 l/h) and high doping level (8 000 mol/mol) seems to provide a disinfection efficiency suitable to decrease the chance of bacterial cross contamination in the fresh-cut industries while saving on water consumption and decreasing the amount of wastewater effluents.



Journal Cover

Microbe(s): Escherichia coli O157:H7


The resistance of thirty two strains of Escherichia coli O157:H7 and six major serotypes of non-O157 shiga toxin-producing E. coli (STEC) plus E. coli O104:H4 was tested against electrolyzed oxidizing (EO) water using two different methods; modified AOAC 955.16 sequential inoculation method and minimum inhibitory concentration (MIC). In sequential inoculation method efficacy of sodium hypochlorite was also compared with equal free chlorine (45 mg/L) containing EO water. MIC experiments were conducted for 15 s testing period with free chlorine concentrations of 3.00, 2.50, 2.00, 1.50, 1.00, 0.50 and 0.25 mg/L. The individual strain resistance when tested using the sequential inoculation method was in between 5 and 10 positive tubes, where greater numbers of positive tubes indicate increased resistance of the respective strain to the particular sanitizer. The MIC of individual strains ranged from 0.50 to 1.50 mg/L free chlorine of EO water. In comparison to sodium hypochlorite at same free chlorine concentration EO water was more effective against all STEC cocktails tested. The resistance of STEC cocktails using sequential inoculation method was determined as E. coli O157 O103 O26 0111 O121 045 > O145. The similar pattern of resistance was observed when cocktails were subjected to MIC. The results indicate that different strains of same serotype can differ in their resistance toward an intervention. In addition, EO water treatment that reduces E. coli O157:H7 can equally if not more effectively reduce other non-O157 STEC tested.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The objectives of this study were to evaluate the effectiveness of low concentration electrolyzed water (LcEW) and other carcass decontaminants against Escherichia coli O157:H7 and Listeria monocytogenes in fresh pork and to conduct the shelf life/sensory study of pork. Pork samples were inoculated with approximately 5 log cfu/g of afore mentioned pathogens and dip treated with distilled water (DW), aqueous ozone (AO), 3% lactic acid (LA), 3% calcium lactate (CaL), sodium hypochlorite solution (NaOCl), LcEW, strong acidic electrolyzed water (SAEW), and LcEW + CaL for 5 min at room temperature (23 2 C). The greatest reduction (3.0 3.2 log cfu/g) was achieved with LcEW + CaL against pathogens and significantly differed (p < 0.05) from other treatments. This combination also extended shelf life of pork up to 6 days at 4 C storage.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


Low concentration electrolyzed water (LcEW) has been proved to be an effective sanitizer against pathogens in cell suspensions as well as pathogens and spoilage organisms attached to vegetables, poultry and meat. In this study, effect of current, electrolysis time and salt concentration on physical properties (pH, ORP and ACC) and inactivation efficacy of LcEW was monitored. Pure cultures of Escherichia coli O157:H7 and Listeria monocytogenes were prepared and exposure treatment was performed for bacteria inactivation study in cell suspensions at room temperature (23 2 C). Our results showed increased reduction of both pathogens with the increase in current. Changes of current also affected the ACC, pH and ORP values of the tested solution. Values of ACC, pH and ORP were increased with the increase in current. Log reduction of 4.9 5.6 log CFU/mL for both pathogens was achieved when the current was increased from 1.15 to 1.45 A. Electrolysis time and percent of salt concentration also influenced the physical properties of LcEW. Stability of LcEW was also investigated under different conditions and it was observed that LcEW produced with increased electrical current was more stable during storage. Therefore, current might influence the properties and sanitizing effect of LcEW.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enteritidis


Slightly acidic electrolyzed water (SAEW) as a novel antimicrobial agent is generated by electrolysis of dilute hydrochloric acid (HCl) and/or sodium chloride (NaCl) solution in a cell with or without a separating membrane. The ultraviolet absorption spectra were used to determine the concentration of hypochlorous acid (HClO) and hypochlorite ion (ClO ) in SAEW generated by four different methods and their bactericidal efficiency for inactivation of Escherichia coli O157:H7 and Salmonella enteritidis was evaluated. During the production of equivalent available chlorine in SAEW, more HClO was produced by electrolysis of HCl solution in a non-membrane generator and mixing the acid and alkaline electrolyzed water generated in a generator with membrane, compared with the methods of adding HCl to neutral electrolyzed water (NEW) and electrolyzing the mixture of NaCl and HCl solution in a non-membrane cell. At the 10 mg/L available chlorine concentration, SAEW produced by the methods with more HClO generation had significantly higher (p<0.05) bactericidal efficiency for inactivation of both pathogens.



Journal Cover

Microbe(s): E. coli O157:H7


Increased interest in blueberries due to their nutritional and health benefits has led to an increase in consumption. However, blueberries are consumed mostly raw or minimally processed and are susceptible to microbial contamination like other type of fresh produce. This study was, therefore, undertaken to evaluate the efficacy of electrostatic spray of electrolyzed oxidizing (EO) water, UV light, ozone, and a combination of ozone and UV light in killing Escherichia coli O157:H7 on blueberries. A 5-strain mixture of E. coli O157:H7 were inoculated on the calyx and skin of blueberries and then subjected to the treatments. Electrostatic EO water spray reduced initial populations of E. coli O157:H7 by only 0.13 to 0.24 log CFU/g and 0.88 to 1.10 log CFU/g on calyx and skin of blueberries, respectively. Ozone treatment with 4000 mg/L reduced E. coli O157:H7 by only 0.66 and 0.72 log CFU/g on calyx and skin of blueberries, respectively. UV light at 20 mW/cm2 for 10 min was the most promising single technology and achieved 2.14 and greater than 4.05 log reductions of E. coli O157:H7 on the calyx and skin of blueberries, respectively. The combination treatment of 1 min ozone and followed by a 2 min UV achieved more than 1 and 2 log additional reductions on blueberry calyx than UV or ozone alone, respectively.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, Bacillus cereus


In this study we investigated the effects of low concentration electrolyzed water (LcEW) and several other sanitizers (strong acid electrolyzed water (SAEW), aqueous ozone (AO), 1% citric acid (CA) and sodium hypochlorite solution (NaOCl)) on the inactivation of natural microflora (total aerobic bacteria counts (TBC) and yeasts and moulds (YM)) and foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium and Bacillus cereus) on oyster mushroom. The effects of temperature and treatment time on the antimicrobial activity of LcEW to reduce the populations of foodborne pathogens were also determined. LcEW showed the strongest bactericidal efficacy among all the sanitizers on TBC, YM and pathogens by reductions of 1.35, 1.08 and 1.90 2.16 log CFU/g after 3 min treatment at room temperature (23 2 C), respectively. There was no significant difference between the antimicrobial effects of LcEW and SAEW (P > 0.05). Among those sanitizers, their relative influence of inactivation was LcEW > NaOCl > CA > AO.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enteritidis


High microbial populations on mung beans and its sprouts are the primary reason of a short shelf life of these products, and potentially present pathogens may cause human illness outbreak. The efficiency for inactivating Escherichia coli O157:H7 (E. coli O157:H7) and Salmonella enteritidis (S. enteritidis), which were artificially inoculated on mung bean seeds and sprouts, by means of slightly acidic electrolyzed water (SAEW, pH 5.0 to 6.5) generated through electrolysis of a mixture of NaCl and hydrochloric acid solution in a non-membrane electrolytic chamber, was evaluated at the different available chlorine concentrations (ACCs, 20-120 mg/l) and treatment time (3-15 min), respectively. The effect of SAEW treatment on the viability of seeds was also determined. Results indicate that the ACC had more significant effect on the bactericidal activity of SAEW for reducing both pathogens on the seeds and sprouts compared to treatment time (P < 0.05). The seeds and sprouts treated with SAEW at ACCs of 20 and 80 mg/l resulted in a reduction of 1.32-1.78 log10 CFU/g and 3.32-4.24 log10 CFU/g for E. coli, while 1.27-1.76 log10 CFU/g and 3.12-4.19 log10 CFU/g for S. enteritidis, respectively. The germination percentage of mung bean seeds was not significantly affected by the treatment of SAEW at an ACC of 20 mg/l for less than 10 min (P > 0.05). The finding of this study implies that SAEW with a near-neutral pH value and low available chlorine is an effective method to reduce foodborne pathogens on seeds and sprouts with less effects on the viability of seeds.



Journal Cover

Microbe(s): Salmonella enterica, Escherichia coli O157:H7, Listeria monocytogenes


This study was intended to evaluate the bactericidal effect of electrolyzed oxidizing water (EOW) and chlorinated water on populations of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes inoculated on avocados (Persea americana var. Hass). In the first experiment, inoculated avocados were treated with a water wash applied by spraying tap water containing 1 mg/liter free chlorine for 15 s (WW); WW treatment and then spraying sodium hypochlorite in water containing 75 mg/liter free chlorine for 15 s (Cl75); WW treatment and then spraying alkaline EOW for 30 s (AkEW) and then spraying acid EOW (AcEW) for 15 s; and spraying AkEW and then AcEW. In another experiment, the inoculated avocados were treated by spraying AkEW and then AcEW for 15, 30, 60, or 90 s. All three pathogen populations were lowered between 3.6 and 3.8 log cycles after WW treatment. The application of Cl75 did not produce any further reduction in counts, whereas AkEW and then AcEW treatment resulted in significantly lower bacterial counts for L. monocytogenes and E. coli O157:H7 but not for Salmonella. Treatments with AkEW and then AcEW produced a significant decrease in L. monocytogenes, Salmonella, and E. coli O157:H7 populations, with estimated log reductions of 3.9 to 5.2, 5.1 to 5.9, and 4.2 to 4.9 log CFU/cm , respectively. Spraying AcEW for more than 15 s did not produce any further decrease in counts of Salmonella or E. coli O157:H7, whereas L. monocytogenes counts were significantly lower after spraying AcEW for 60 s. Applying AkEW and then AcEW for 15 or 30 s seems to be an effective alternative to reduce bacterial pathogens on avocado surfaces.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The objective of this study was to determine the synergistic effect of alkaline electrolyzed water and citric acid with mild heat against background and pathogenic microorganisms on carrots. Shredded carrots were inoculated with approximately 6 7 log CFU/g of Escherichia coli O157:H7 (932, and 933) and Listeria monocytogenes (ATCC 19116, and 19111) and then dip treated with alkaline electrolyzed water (AlEW), acidic electrolyzed water (AcEW), 100 ppm sodium hypochlorite (NaOCl), deionized water (DaIW), or 1% citric acid (CA) alone or with combinations of AlEW and 1% CA (AlEW + CA). The populations of spoilage bacteria on the carrots were investigated after various exposure times (1, 3, and 5 min) and treatment at different dipping temperatures (1, 20, 40, and 50 C) and then optimal condition (3 min at 50 C) was applied against foodborne pathogens on the carrots. When compared to the untreated control, treatment AcEW most effectively reduced the numbers of total bacteria, yeast and fungi, followed by AlEW and 100 ppm NaOCl. Exposure to all treatments for 3 min significantly reduced the numbers of total bacteria, yeast and fungi on the carrots. As the dipping temperature increased from 1 C to 50 C, the reductions of total bacteria, yeast and fungi increased significantly from 0.22 to 2.67 log CFU/g during the wash treatment (p 0.05). The combined 1% citric acid and AlEW treatment at 50 C showed a reduction of the total bacterial count and the yeast and fungi of around 3.7 log CFU/g, as well as effective reduction of L. monocytogenes (3.97 log CFU/g), and E. Coli O157:H7 (4 log CFU/g). Combinations of alkaline electrolyzed water and citric acid better maintained the sensory and microbial quality of the fresh-cut carrots and enhanced the overall shelf-life of the produce.



Journal Cover

Microbe(s): Escherichia coli O157:H7


Inoculated strawberries were treated with deionized water (control), electrolyzed oxidizing (EO) water (23 and 55 mg/L of residual chlorine), and chlorinated water (55 mg/L of residual chlorine), either with or without ultrasonication. Inoculated broccoli was treated with EO water containing 55 and 100 mg/L of residual chlorine and chlorinated water with 100 mg/L of residual chlorine. Treatments were conducted for 1 and 5 min at temperatures of 4 and 24C, respectively. Dipping strawberries and broccoli into EO water or chlorinated water significantly (P < 0.05) reduced the Escherichia coli O157:H7 counts compared with inoculated controls. Dipping inoculated strawberries with chlorinated water or EO water with ultrasonication reduced E. coli O157:H7 cells by 0.7 to 1.9 log cfu/g depending on the treatment time and treatment solution temperature. Dipping inoculated broccoli into chlorinated water or EO water with ultrasonication for 1 or 5 min reduced the bacterial population by 1.2 to 2.2 log cfu/g. Significant (P < 0.05) reductions in pathogen populations were observed when produce was treated with EO water in conjunction with ultrasonication. Results revealed that EO water was either more than or as effective as chlorinated water in killing E. coli O157:H7 cells on strawberries and broccoli.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Staphylococcus aureus


The use of different available chlorine concentrations (ACCs) of slightly acidic electrolyzed water (SAEW; 0.5 to 30 mg/liter), different treatment times, and different temperatures for inactivating Escherichia coli O157:H7 and Staphylococcus aureus was evaluated. The morphology of both pathogens also was analyzed with transmission electron microscopy. A 3-min treatment with SAEW (pH 6.0 to 6.5) at ACCs of 2 mg/liter for E. coli O157:H7 and 8 mg/liter for S. aureus resulted in 100% inactivation of two cultures (7.92- to 8.75-log reduction) at 25 C. The bactericidal activity of SAEW was independent of the treatment time and temperature at a higher ACC (P > 0.05). E. coli O157:H7 was much more sensitive than S. aureus to SAEW. The morphological damage to E. coli O157:H7 cells by SAEW was significantly greater than that to S. aureus cells. At an ACC as high as 30 mg/liter, E. coli O157:H7 cells were damaged, but S. aureus cells retained their structure and no cell wall damage or shrinkage was observed. SAEW with a near neutral pH may be a promising disinfectant for inactivation of foodborne pathogens.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Staphylococcus aureus


The use of different available chlorine concentrations (ACCs) of slightly acidic electrolyzed water (SAEW; 0.5 to 30 mg/



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The efficacy of newly developed low concentration electrolyzed water (LcEW) was investigated to inactivate the pathogens on spinach leaves as a convenient and safe alternative sanitizer and it was compared to other sanitizers. Spinach leaves were inoculated with Escherichia coli O157:H7 and Listeria monocytogenes and dip treated with deionized water (DIW), LcEW, strong acid electrolyzed water (SAEW), aqueous ozone (AO), 1% citric acid (CA) and sodium hypochlorite solution (NaOCl) for 3 min at room temperature (23 +/- 2 C). For all pathogens, the similar pattern of microbial reduction on spinach was apparent with LcEW and SAEW washing. In the present study, it was found that LcEW inactivated, at maximum, 1.64-2.80 log cfu/g and DIW resulted in lowest reduction, 0.31-0.95 log cfu/g of background or pathogenic microflora present on spinach leaves compared to the unwashed control. The findings of this study indicate that LcEW and SAEW did not differ significantly (P > 0.05) in reducing background or pathogenic microflora on spinach and LcEW may be a promising sanitizer for washing vegetables without environmental pollution instead of using electrolyzed oxidizing (EO) water or SAEW.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium


Strong acid electrolyzed water (SAEW) has a very limited application due to its low pH value (< 2.7) and corrosive characteristics. Thus, we developed new low concentration electrolyzed water (LcEW). The efficacy of LcEW under various treatment conditions for the inactivation of different foodborne pathogens in pure culture was evaluated and compared with SAEW. The efficiency of LcEW and SAEW for the inactivation of predominant foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium) with different dipping times (1, 3, 5, 7 and 10 min), pH values (2.5, 4.0, 5.0, 6.0 and 9.0) and temperatures (4, 15, 23, 35 and 50 C) were determined. Reductions of bacterial populations of 1.7 to 6.6 log10 CFU/mL in various treated conditions in cell suspensions were observed after treatment with LcEW and SAEW, compared to the untreated control. Dip washing (1 min at 35 C) of lettuce leaves in both electrolyzed water resulted in 2.5 to 4.0 log10 CFU/g compared to the unwashed control. Strong inactivation effects were observed in LcEW, and no significant difference (p > 0.05) was observed between LcEW and SAEW. The effective form of chlorine compounds in LcEW was almost exclusively hypochlorous acid (HOCl), which has strong antimicrobial activity and leaves no residuals due to the low concentration of residual chlorine. Thus, LcEW could be widely applied as a new sanitizer in the food industry.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella typhimurium, Listeria monocytogenes


Acidic electrolyzed water (AC-EW) has strong bactericidal activity against foodborne pathogens on fresh vegetables. However, the efficacy of AC-EW is influenced by soil or other organic materials present. This study examined the bactericidal activity of AC-EW in the presence of organic matter, in the form of bovine serum against foodborne pathogens on the surfaces of green onions and tomatoes. Green onions and tomatoes were inoculated with a culture cocktail of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes. Treatment of these organisms with AC-EW containing bovine serum concentrations of 5, 10, 15, and 20 ml/l was performed for 15 s, 30 s, 1 min, 3 min and 5 min. The total residual chlorine concentrations of AC-EW decreased proportional to the addition of serum. The bactericidal activity of AC-EW also decreased with increasing bovine serum concentration, whereas unamended AC-EW treatment reduced levels of cells to below the detection limit (0.7 logCFU/g) within 3 min.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enteritidis


Neutral (NEW) and acidic (AEW) electrolyzed water were stored in open or closed glass bottles under light or dark conditions at 20 C for 30 days. The pH, oxidation reduction potential (ORP), electrical conductivity (EC), available chlorine concentration (ACC), dissolved oxygen (DO), and bactericidal efficiency of NEW and AEW were determined during storage or before and after storage, respectively. The pH and EC of NEW and AEW remained unchanged in storage. The ORP, ACC and DO of AEW decreased 22%, 100% and 52% under open storage conditions, respectively. Light had no significant effects on the physicochemical properties of NEW (P > 0.05). Bactericidal efficiency was not markedly affected by storage conditions for NEW, but decreased significantly for AEW under open storage conditions. Electrolyzed water should be stored in closed containers or used immediately to prevent the loss of available chlorine that is one of the main contributing factors for antimicrobial activity.



Journal Cover

Microbe(s): Escherichia coli O157:H7


This study compared the efficacy of chlorine (20 200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20 200 ppm chlorite ion concentration, Sanova ), and aqueous chlorine dioxide (20 200 ppm chlorite ion concentration, TriNova ) washes in reducing populations of Escherichia coli O157:H7 on artificially inoculated lettuce. Fresh-cut leaves of Romaine or Iceberg lettuce were inoculated by immersion in water containing E. coli O157:H7 (8 log CFU/ml) for 5 min and dried in a salad spinner. Leaves (25 g) were then washed for 2 min, immediately or following 24 h of storage at 4 C. The washing treatments containing chlorite ion concentrations of 100 and 200 ppm were the most effective against E. coli O157:H7 populations on Iceberg lettuce, with log reductions as high as 1.25 log CFU/g and 1.05 log CFU/g for TriNova and Sanova wash treatments, respectively. All other wash treatments resulted in population reductions of less than 1 log CFU/g. Chlorine (200 ppm), TriNova , Sanova , and acidic electrolyzed water were all equally effective against E. coli O157:H7 on Romaine, with log reductions of ~ 1 log CFU/g. The 20 ppm chlorine wash was as effective as the deionized water wash in reducing populations of E. coli O157:H7 on Romaine and Iceberg lettuce. Scanning electron microscopy indicated that E. coli O157:H7 that was incorporated into biofilms or located in damage lettuce tissue remained on the lettuce leaf, while individual cells on undamaged leaf surfaces were more likely to be washed away.



Journal Cover

Microbe(s): Escherichia coli O157:H7


Treatment of fresh fruits and vegetables with electrolyzed water (EW) has been shown to kill or reduce foodborne pathogens. We evaluated the efficacy of EW in killing Escherichia coli O157:H7 on iceberg lettuce, cabbage, lemons, and tomatoes by using washing and/or chilling treatments simulating those followed in some food service kitchens. Greatest reduction levels on lettuce were achieved by sequentially washing with 14-A (amperage) acidic EW (AcEW) for 15 or 30 s followed by chilling in 16-A AcEW for 15 min. This procedure reduced the pathogen by 2.8 and 3.0 log CFU per leaf, respectively, whereas washing and chilling with tap water reduced the pathogen by 1.9 and 2.4 log CFU per leaf. Washing cabbage leaves for 15 or 30 s with tap water or 14-A AcEW reduced the pathogen by 2.0 and 3.0 log CFU per leaf and 2.5 to 3.0 log CFU per leaf, respectively. The pathogen was reduced by 4.7 log CFU per lemon by washing with 14-A AcEW and 4.1 and 4.5 log CFU per lemon by washing with tap water for 15 or 30 s. A reduction of 5.3 log CFU per lemon was achieved by washing with 14-A alkaline EW for 15 s prior to washing with 14-A AcEW for 15 s. Washing tomatoes with tap water or 14-A AcEW for 15 s reduced the pathogen by 6.4 and 7.9 log CFU per tomato, respectively. Application of AcEW using procedures mimicking food service operations should help minimize cross-contamination and reduce the risk of E. coli O157:H7 being present on produce at the time of consumption.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes


Recent foodborne outbreaks implicating spinach and lettuce have increased consumer concerns regarding the safety of fresh produce. While the most common commercial antimicrobial intervention for fresh produce is wash water containing 50 to 200 ppm chlorine, this study compares the effectiveness of acidified sodium chlorite, chlorine, and acidic electrolyzed water for inactivating Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes inoculated onto leafy greens. Fresh mixed greens were left uninoculated or inoculated with approximately 6 log CFU/g of E. coli O157:H7, Salmonella, and L. monocytogenes and treated by immersion for 60 or 90 s in different wash solutions (1:150, wt/vol), including 50 ppm of chlorine solution acidified to pH 6.5, acidic electrolyzed water (pH 2.1 0.2, oxygen reduction potential of 1,100 mV, 30 to 35 ppm of free chlorine), and acidified sodium chlorite (1,200 ppm, pH 2.5). Samples were neutralized and homogenized. Bacterial survival was determined by standard spread plating on selective media. Each test case (organism treatment time) was replicated twice with five samples per replicate. There was no difference (P 0.05) in the time of immersion on the antimicrobial effectiveness of the treatments. Furthermore, there was no difference (P 0.05) in survival of the three organisms regardless of treatment or time. Acidified sodium chlorite, resulted in reductions in populations of 3 to 3.8 log CFU/g and was more effective than chlorinated water (2.1 to 2.8 log CFU/g reduction). These results provide the produce industry with important information to assist in selection of effective antimicrobial strategies.



Journal Cover

Microbe(s): Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, Erwinia carotovora


Consumption of minimally-processed, or fresh-cut, fruit and vegetables has rapidly increased in recent years, but there have also been several reported outbreaks associated with the consumption of these products. Sodium hypochlorite is currently the most widespread disinfectant used by fresh-cut industries. Neutral electrolyzed water (NEW) is a novel disinfection system that could represent an alternative to sodium hypochlorite. The aim of the study was to determine whether NEW could replace sodium hypochlorite in the fresh-cut produce industry. The effects of NEW, applied in different concentrations, at different treatment temperatures and for different times, in the reduction of the foodborne pathogens Salmonella, Listeria monocytogenes and Escherichia coli O157:H7 and against the spoilage bacterium Erwinia carotovora were tested in lettuce. Lettuce was artificially inoculated by dipping it in a suspension of the studied pathogens at 108, 107 or 105 cfu ml 1, depending on the assay. The NEW treatment was always compared with washing with deionized water and with a standard hypochlorite treatment. The effect of inoculum size was also studied. Finally, the effect of NEW on the indigenous microbiota of different packaged fresh-cut products was also determined. The bactericidal activity of diluted NEW (containing approximately 50 ppm of free chlorine, pH 8.60) against E. coli O157:H7, Salmonella, L. innocua and E. carotovora on lettuce was similar to that of chlorinated water (120 ppm of free chlorine) with reductions of 1 2 log units. There were generally no significant differences when treating lettuce with NEW for 1 and 3 min. Neither inoculation dose (107 or 105 cfu ml 1) influenced the bacterial reduction achieved. Treating fresh-cut lettuce, carrot, endive, corn salad and Four seasons salad with NEW 1:5 (containing about 50 ppm of free chlorine) was equally effective as applying chlorinated water at 120 ppm. Microbial reduction depended on the vegetable tested: NEW and sodium hypochlorite treatments were more effective on carrot and endive than on iceberg lettuce, Four seasons salad and corn salad. The reductions of indigenous microbiota were smaller than those obtained with the artificially inoculated bacteria tested (0.5 1.2 log reduction). NEW seems to be a promising disinfection method as it would allow to reduce the amount of free chlorine used for the disinfection of fresh-cut produce by the food industry, as the same microbial reduction as sodium hypochlorite is obtained. This would constitute a safer, in situ , and easier to handle way of ensuring food safety.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes


The ability of electrolyzed water (EW) to inactivate foodborne pathogens on the surfaces of lettuce and spinach was investigated. Lettuce and spinach leaves were inoculated with a cocktail of 3 strains each of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and treated with acidic electrolyzed water (AC-EW), alkaline electrolyzed water (AK-EW), alkaline electrolyzed water followed by acidic electrolyzed water (sequential treatment, AK-EW + AC-EW), deionized water followed by acidic electrolyzed water (sequential treatment, DW + AC-EW), and deionized water (control, DW) for 15, 30 s, and 1, 3, and 5 min at room temperature (22 2 C). For all 3 pathogens, the same pattern of microbial reduction on lettuce and spinach were apparent. The relative efficacy of reduction was AC-EW > DW + AC-EW = AK-EW + AC-EW > AK-EW > control. After a 3-min treatment of AC-EW, the 3 tested pathogens were reduced below the detection limit (0.7 log). DW + AC-EW and AK-EW + AC-EW produced the same levels of reduction after 5 min when compared to the control. AK-EW did not reduce levels of pathogens even after a 5-min treatment on lettuce and spinach. Results suggest that AC-EW treatment was able to significantly reduce populations of the 3 tested pathogens from the surfaces of lettuce and spinach with increasing time of exposure.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


Antibacterial activity of electrolyzed oxidizing (EO) water prepared from 0.05% or 0.10% (w/v) sodium chloride (NaCl) solutions against indigenous bacteria associated with fresh strawberries (Fragaria ananassa) was evaluated. The efficacy of EO water and sodium hypochlorite (NaOCl) solution in eliminating and controlling the growth of Listeria monocytogenes and Escherichia coli O157:H7 inoculated onto strawberries stored at 4 +/- 1 C up to 15 d was investigated at exposure time of 1, 5, or 10 min. Posttreatment neutralization of fruit surfaces was also determined. More than 2 log10 CFU/g reductions of aerobic mesophiles were obtained in fruits washed for 10 or 15 min in EO water prepared from 0.10% (w/v) NaCl solution. Bactericidal activity of the disinfectants against L. monocytogenes and E. coli O157:H7 was not affected by posttreatment neutralization, and increasing exposure time did not significantly increase the antibacterial efficacy against both pathogens. While washing fruit surfaces with distilled water resulted in 1.90 and 1.27 log10 CFU/mL of rinse fluid reduction of L. monocytogenes and E. coli O157:H7, respectively, > 2.60 log10 CFU/mL of rinse fluid reduction of L. monocytogenes and up to 2.35 and 3.12 log10 CFU/mL of rinse fluid reduction of E. coli O157:H7 were observed on fruit surfaces washed with EO water and NaOCl solution, respectively. Listeria monocytogenes and E. coli O157:H7 populations decreased over storage regardless of prior treatment. However, EO water and aqueous NaOCl did not show higher antimicrobial potential than water treatment during refrigeration storage.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes


Shredded carrots were inoculated with Escherichia coli O157:H7, Salmonella or Listeria monocytogenes and washed for 1 or 2 min with chlorine (Cl; 200 ppm), peroxyacetic acid (PA; 40 ppm) or acidified sodium chlorite (ASC; 100, 200, 500 ppm) under simulated commercial processing conditions. After washed, the carrots were spin dried, packaged and stored at 5 C for up to 10 days. Bacterial enumeration was significantly (P 0.05) reduced by 1, 1.5 and 2.5 log CFU/g after washing with ASC 100, 250 and 500 ppm, respectively. All sanitizers reduced pathogen load below that of tap water wash and unwashed controls. During storage at 5 C the bacterial load of all treatments increased gradually, but to different extent in different treatments. ASC inhibited bacterial growth more effectively than the other sanitizers and also maintained the lowest pathogen counts (<1 log CFU/g) during storage. Organic matter in the process water significantly (P 0.05) reduced the antibacterial efficacy of Cl, but not that of PA or ASC. Therefore, ASC shows the potential to be used as a commercial sanitizer for washing shredded carrots.



Journal Cover

Microbe(s): Escherichia coli O157:H7


The Nernst equations between the oxidation reduction potential (ORP), the concentration of hypochlorous acid and chlorine and the value of pH in electrolyzed oxidizing water (EOW) were developed in three parts, which were in agreement in the measured values. The role of ORP in EOW for killing Escherichia coli O157:H7 was studied. The inactivation effect of EOW on E. coli O157:H7 was also studied by spectroscopy measurements, and the inactivation mechanism was proposed.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Listeria monocytogenes


Raw fish is prone to the risk of microbial outbreaks due to contamination by pathogenic microorganisms, such as Escherichia coli O157:H7 and Listeria monocytogenes. Therefore, it is essential to treat raw fish to inactivate pathogenic microorganisms. Electrolyzed Oxidizing Water (EO) is a novel antimicrobial agent containing acidic solution with a pH of 2.6, Oxidation Reduction Potential (ORP) of 1150 mV, and 70 90 ppm free chlorine, and alkaline solution with a pH of 11.4 and ORP of 795 mV. This study was undertaken to evaluate the efficacy of acidic EO water treatment and alkaline EO water treatment followed by acidic EO water treatment at various temperatures for the inactivation of E. coli O157:H7 and L. monocytogenes Scott A on the muscle and skin surfaces of inoculated salmon fillets. Inoculated salmon fillets were treated with acidic EO water at 22 and 35 C and 90 ppm free-chlorine solution as control at 22 C for 2, 4, 8, 16, 32, and 64 min. The acidic EO water treatments resulted in a reduction of L. monocytogenes Scott A population in the range of 0.40 log10 CFU/g (60%) at 22 C to 1.12 log10 CFU/g (92.3%) at 35 C. Treatment of inoculated salmon fillets with acidic EO water reduced E. coli O157:H7 populations by 0.49 log10 CFU/g (67%) at 22 C and 1.07 log10 CFU/g (91.1%) at 35 C. The maximum reduction with chlorine solution (control) was 1.46 log10 CFU/g (96.3%) for E. coli O157:H7 and 1.3 log10 CFU/g (95.3%) for L. monocytogenes Scott A at 64 min. A response surface model was developed for alkaline treatment followed by acidic EO water treatment to predict treatment times in the range of 5 30 min and temperatures in the range of 22 35 C for effective treatment with alkaline EO water followed by acidic water, alkaline and acidic water treatments. Response surface analysis demonstrated maximum log reductions of 1.33 log10 CFU/g (95.3%) for E. coli O157:H7 and 1.09 log10 CFU/g (91.9%) for L. monocytogenes Scott A. Data collected from the treatments was used to develop empirical models as a function of treatment times and temperature for prediction of population of E. coli O157:H7 and L. monocytogenes Scott A. Correlations (R2) of 0.52 and 0.77 were obtained between model predicted and experimental log10 reduction for E. coli O157:H7 and L. monocytogenes Scott A reductions, respectively. These results clearly indicated that EO water has a potential to be used for decontamination of raw fish.



Journal Cover

Microbe(s): Total Microbial Count


The hides of cattle are the primary source of pathogens such as Escherichia coli O157:H7 that contaminate preevisceration carcasses during commercial beef processing. A number of interventions that reduce hide contamination and subsequent carcass contamination are currently being developed. The objective of this study was to determine the efficacy of ozonated and electrolyzed oxidizing (EO) waters to decontaminate beef hides and to compare these treatments with similar washing in water without the active antimicrobial compounds. Cattle hides draped over barrels were used as the model system. Ozonated water (2 ppm) was applied at 4,800 kPa (700 lb in2) and 15 C for 10 s. Alkaline EO water and acidic EO water were sequentially applied at 60 C for 10 s at 4,800 and 1,700 kPa (250 lb in2), respectively. Treatment using ozonated water reduced hide aerobic plate counts by 2.1 log CFU/100 cm2 and reduced Enterobacteriaceae counts by 3.4 log CFU/100 cm2. EO water treatment reduced aerobic plate counts by 3.5 log CFU/100 cm2 and reduced Enterobacteriaceae counts by 4.3 log CFU/100 cm2. Water controls that matched the wash conditions of the ozonated and EO treatments reduced aerobic plate counts by only 0.5 and 1.0 log CFU/100 cm2, respectively, and each reduced Enterobacteriaceae counts by 0.9 log CFU/100 cm2. The prevalence of E. coli O157 on hides was reduced from 89 to 31% following treatment with ozonated water and from 82 to 35% following EO water treatment. Control wash treatments had no significant effect on the prevalence of E. coli O157:H7. These results demonstrate that ozonated and EO waters can be used to decontaminate hides during processing and may be viable treatments for significantly reducing pathogen loads on beef hides, thereby reducing pathogens on beef carcasses.



Journal Cover

Microbe(s): Listeria monocytogenes, Escherichia coli O157:H7


Acidic electrolyzed water (AcEW) was used as frozen AcEW (AcEW-ice) for inactivation of Listeria monocytogenes and Escherichia coli O157:H7 on lettuce. AcEW-ice was prepared from AcEW with 20, 50, 100, and 200 ppm of available chlorine by freezing at 40 C and generated 30, 70, 150, and 240 ppm of chlorine gas (Cl2), respectively. The AcEW-ice was placed into styrene-foam containers with lettuce samples at 20 C for 24 h. Although AcEW-ice generating 30 ppm Cl2 had no effect on L. monocytogenes cell counts, AcEW-ice generating 70 to 240 ppm of Cl2 significantly (P < 0.05) reduced L. monocytogenes by ca. 1.5 log CFU/g. E. coli O157:H7 cell counts were reduced by 1.0 log CFU/g with AcEW-ice generating 30 ppm of Cl2. AcEW-ice generating 70 and 150 ppm of Cl2 reduced E. coli O157:H7 by 2.0 log CFU/g. Further significant reduction of E. coli O157:H7 (2.5 log CFU/g) was demonstrated by treatment with AcEW-ice generating 240 ppm of Cl2. However, treatment with AcEW-ice generating 240 ppm of Cl2 resulted in a physiological disorder resembling leaf burn. AcEW-ice that generated less than 150 ppm of Cl2 had no effect on the surface color of the lettuce. AcEW-ice, regardless of the concentration of the emission of Cl2, had no effect on the ascorbic acid content in the lettuce. The weight ratio of lettuce to AcEW-ice required was determined to be over 1:10. The bactericidal effect of AcEW-ice appeared within the first 2 h. The use of AcEW-ice provides simultaneously for low temperature storage and inactivation of bacteria.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella


Cut lettuce dip-inoculated with Escherichia coli O157:H7 and Salmonella was treated with alkaline electrolyzed water (AlEW) at 20 C for 5 min, and subsequently washed with acidic electrolyzed water (AcEW) at 20 C for 5 min. Pre-treatment with AlEW resulted in an approximate 1.8 log10 cfu/g reduction of microbial populations, which was significantly (p 0.05) greater than microbial reductions resulting from other pre-treatment solutions, including distilled water and AcEW. Repeated AcEW treatment did not show a significant bacterial reduction. Mildly heated (50 C) sanitizers were compared with normal (20 C) or chilled (4 C) sanitizers for their bactericidal effect. Mildly heated AcEW and chlorinated water (200 ppm free available chlorine) with a treatment period of 1 or 5 min produced equal reductions of pathogenic bacteria of 3 log10 and 4 log10 cfu/g, respectively. The procedure of treating with mildly heated AlEW for 5 min, and subsequent washing with chilled (4 C) AcEW for period of 1 or 5 min resulted in 3 4 log10 cfu/g reductions of both the pathogenic bacterial counts on lettuce. Extending the mild heat pre-treatment time increased the bactericidal effect more than that observed from the subsequent washing time with chilled AcEW. The appearance of the mildly heated lettuce was not deteriorated after the treatment. In this study, we have illustrated the efficacious application of AlEW as a pre-wash agent, and the effective combined use of AlEW and AcEW.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Listeria monocytogenes


Raw fish is prone to risk of microbial outbreaks due to contamination of pathogenic microorganisms. Escherichia coli O157:H7 and Listeria monocytogenes are among the pathogens associated with raw fish. Therefore, it is important to treat raw fish to inactivate pathogenic microorganisms. Electrolyzed oxidizing water is novel antimicrobial agent containing acidic solution with a pH of 2.6- 2.9, ORP of 1120 1180 mV, and 76-90 ppm free chlorine, and alkaline solution with a pH of 11.5 and ORP of 795 mV. This study was undertaken to evaluate the efficacy of electrolyzed oxidizing (EO) water for inactivation of E. coli O157:H7 and L. monocytogenes Scott A on the surfaces (muscle and skin surfaces) of inoculated salmon fillets. Inoculated salmon fillets were treated only with acidic EO water at 22C and 35C and sodium hypochlorite solution (90 ppm free chlorine) as control at 22C for 2, 4, 8, 16, 32, and 64 min, respectively. For the treatment with alkaline EO water followed by acidic EO water, a response surface model was developed to predict effective times in the range of 5-30 min and temperatures in the range of 22-35C for both alkaline and acidic water treatments. The acidic EO water treatments resulted in reductions of population of L. monocytogenes Scott A ranging from 0.40 log10 CFU/g (60 %) at 22oC to 1.12 log10 CFU/g (92.3 %) at 35oC. Treatment of inoculated salmon fillets in acidic EO water reduced E. coli O157:H7 populations by 0.49 log10 CFU/g (67 %) 22C and 1.07 log10 CFU/g (91.1 %) at 35C, respectively. Response surface analysis for alkaline EO water treatment followed by acidic treatment demonstrated that, maximum log reduction of 1.33 log10 CFU/g (95.3 %) for E. coli O157:H7 and 1.09 log10 CFU/g (91.9 %) for L. monocytogenes Scott A.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The effects of chlorine and pH on the bactericidal activity of electrolyzed (EO) water were examined against Escherichia coli O157:H7 and Listeria monocytogenes. The residual chlorine concentration of EO water ranged from 0.1 to 5.0 mg/l, and the pH effect was examined at pH 3.0, 5.0, and 7.0. The bactericidal activity of EO water increased with residual chlorine concentration for both pathogens, and complete inactivation was achieved at residual chlorine levels equal to or higher than 1.0 mg/l. The results showed that both pathogens are very sensitive to chlorine, and residual chlorine level of EO water should be maintained at 1.0 mg/l or higher for practical applications. For each residual chlorine level, bactericidal activity of EO water increased with decreasing pH for both pathogens. However, with sufficient residual chlorine (greater than 2 mg/l), EO water can be applied in a pH range between 2.6 (original pH of EO water) and 7.0 while still achieving complete inactivation of E. coli O157:H7 and L. monocytogenes.



Journal Cover

Microbe(s): Escherichia coli O157: H7


To evaluate the potential of using electrolyzed oxidizing (EO) water for controlling Escherichia coli O157:H7 in water for livestock, the effects of water source, electrolyte concentration, dilution, storage conditions, and bacterial or fecal load on the oxidative reduction potential (ORP) and bactericidal activity of EO water were investigated. Anode and combined (7:3 anode:cathode, vol/vol) EO waters reduced the pH and increased the ORP of deionized water, whereas cathode EO water increased pH and lowered ORP. Minimum concentrations (vol/vol) of anode and combined EO waters required to kill 104 CFU/ml planktonic suspensions of E. coli O157:H7 strain H4420 were 0.5 and 2.0%, respectively. Cathode EO water did not inhibit H4420 at concentrations up to 16% (vol/vol). Higher concentrations of anode or combined EO water were required to elevate the ORP of irrigation or chlorinated tap water compared with that of deionized water. Addition of feces to EO water products (0.5% anode or 2.0% combined, vol/vol) significantly reduced (P < 0.001) their ORP values to <700 mV in all water types. A relationship between ORP and bactericidal activity of EO water was observed. The dilute EO waters retained the capacity to eliminate a 104 CFU/ml inoculation of E. coli O157:H7 H4420 for at least 70 h regardless of exposure to UV light or storage temperature (4 versus 24 C). At 95 h and beyond, UV exposure reduced ORP, significantly more so (P < 0.05) in open than in closed containers. Bactericidal activity of EO products (anode or combined) was lost in samples in which ORP value had fallen to 848 mV. When stored in the dark, the diluted EO waters retained an ORP of >848 mV and bactericidal efficacy for at least 125 h; with refrigeration (4 C), these conditions were retained for at least 180 h. Results suggest that EO water may be an effective means by which to control E. coli O157:H7 in livestock water with low organic matter content.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Salmonella Enteritidis, and Listeria monocytogenes


A study was conducted to evaluate the efficacy of electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water in killing Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on the surfaces of spot-inoculated tomatoes. Inoculated tomatoes were sprayed with electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water (control) and rubbed by hand for 40 s. Populations of E. coli O157:H7, Salmonella, and L. monocytogenes in the rinse water and in the peptone wash solution were determined. Treatment with 200-ppm chlorine water and electrolyzed acidic water resulted in 4.87- and 7.85-log10 reductions, respectively, in Escherichia coli O157:H7 counts and 4.69- and 7.46-log10 reductions, respectively, in Salmonella counts. Treatment with 200-ppm chlorine water and electrolyzed acidic water reduced the number of L. monocytogenes by 4.76 and 7.54 log10 CFU per tomato, respectively. This study s findings suggest that electrolyzed acidic water could be useful in controlling pathogenic microorganisms on fresh produce.



Journal Cover

Microbe(s): Salmonella enteritidis, Listeria monocytogenes


Aims: To determine the efficacy of neutral electrolyzed water (NEW) in killing Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes, as well as nonpathogenic E. coli, on the surface of tomatoes, and to evaluate the effect of rinsing with NEW on the organoleptic characteristics of the tomatoes. Methods and Results: The bactericidal activity of NEW, containing 444 or 89 mg l-1 of active chlorine, was evaluated over pure cultures (8-5 log CFU ml-1) of the above-mentioned strains. All of them were reduced by more than 6 log CFU ml-1 within 5 min of exposure to NEW. Fresh tomatoes were surface-inoculated with the same strains, and rinsed in NEW (89 mg l-1 of active chlorine) or in deionized sterile water (control), for 30 or 60 s. In the NEW treatments, independent of the strain and of the treatment time, an initial surface population of about 5 log CFU sq.cm-1 was reduced to <1 log CFU sq.cm-1, and no cells were detected in the washing solution by plating procedure. A sensory evaluation was conducted to ascertain possible alterations in organoleptic qualities, yielding no significant differences with regard to untreated tomatoes. Significance and Impact of the Study: Rinsing in NEW reveals as an effective method to control the presence of E. coli O157:H7, S. enteritidis and L. monocytogenes on the surface of fresh tomatoes, without affecting their organoleptic characteristics. This indicates its potential application for the decontamination of fresh produce surfaces.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Salmonella Enteritidis, Listeria monocytogenes


A study was conducted to evaluate the efficacy of electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water in killing Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on the surfaces of spot-inoculated tomatoes. Inoculated tomatoes were sprayed with electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water (control) and rubbed by hand for 40 s. Populations of E. coli O157:H7, Salmonella, and L. monocytogenes in the rinse water and in the peptone wash solution were determined. Treatment with 200-ppm chlorine water and electrolyzed acidic water resulted in 4.87- and 7.85-log10 reductions, respectively, in Escherichia coli O157:H7 counts and 4.69- and 7.46-log10 reductions, respectively, in Salmonella counts. Treatment with 200-ppm chlorine water and electrolyzed acidic water reduced the number of L. monocytogenes by 4.76 and 7.54 log10 CFU per tomato, respectively. This study s findings suggest that electrolyzed acidic water could be useful in controlling pathogenic microorganisms on fresh produce.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enterica, Listeria monocytogenes


Fresh-cut lettuce samples inoculated with S. Typhimurium, E. coli O157:H7 or L. monocytogenes were dipped into 300 ppm electrolyzed water (EW) at pH 4 to 9 and 30 C for 5 min. The effects of treatment pH on bacterial reduction and visual quality of the lettuce were determined. The treatments at pH 4 and 8 resulted in the most effective inactivation of E. coli O157:H7, but the effect of pH was not significant (P > 0.05) for S. Typhimurium and L. monocytogenes. The treatment at pH 7 retained the best visual quality of lettuce, and achieved a reduction of approximately 2 log CFU/g for above 3 bacteria.



Journal Cover

Microbe(s): Escherichia coli O157: H7


Electrolyzed oxidizing water is a relatively new concept that has been utilized in agriculture, livestock management, medical sterilization, and food sanitation. Electrolyzed oxidizing (EO) water generated by passing sodium chloride solution through an EO water generator was used to treat alfalfa seeds and sprouts inoculated with a five-strain cocktail of nalidixic acid resistant Escherichia coli O157:H7. EO water had a pH of 2.6, an oxidation reduction potential of 1150 mV and about 50 ppm free chlorine. The percentage reduction in bacterial load was determined for reaction times of 2, 4, 8, 16, 32, and 64 min. Mechanical agitation was done while treating the seeds at different time intervals to increase the effectiveness of the treatment. Since E. coli O157:H7 was released due to soaking during treatment, the initial counts on seeds and sprouts were determined by soaking the contaminated seeds/sprouts in 0.1% peptone water for a period equivalent to treatment time. The samples were then pummeled in 0.1% peptone water and spread plated on tryptic soy agar with 50 g/ml of nalidixic acid (TSAN). Results showed that there were reductions between 38.2% and 97.1% (0.22 1.56 log10 CFU/g) in the bacterial load of treated seeds. The reductions for sprouts were between 91.1% and 99.8% (1.05 2.72 log10 CFU/g). An increase in treatment time increased the percentage reduction of E. coli O157:H7. However, germination of the treated seeds reduced from 92% to 49% as amperage to make EO water and soaking time increased. EO water did not cause any visible damage to the sprouts.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The efficacy of electrolyzed oxidizing (EO) and acidified chlorinated water (45 ppm residual chlorine) was evaluated in killing Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. After surface inoculation, each leaf was immersed in 1.5 L of EO or acidified chlorinated water for 1 or 3 min at 22 C. Compared to a water wash only, the EO water washes significantly decreased mean populations of E. coli O157:H7 and L. monocytogenes by 2.41 and 2.65 log10 CFU per lettuce leaf for 3 min treatments, respectively (p < 0.05). However, the difference between the bactericidal activity of EO and acidified chlorinated waters was not significant (p > 0.05). Change in the quality of lettuce subjected to the different wash treatments was not significant at the end of 2 wk of storage.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


The efficacy of electrolyzed oxidizing (EO) and acidified chlorinated water (45 ppm residual chlorine) was evaluated in killing Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. After surface inoculation, each leaf was immersed in 1.5 L of EO or acidified chlorinated water for 1 or 3 min at 22 C. Compared to a water wash only, the EO water washes significantly decreased mean populations of E. coli O157:H7 and L. monocytogenes by 2.41 and 2.65 log10 CFU per lettuce leaf for 3 min treatments, respectively (p < 0.05). However, the difference between the bactericidal activity of EO and acidified chlorinated waters was not significant (p > 0.05). Change in the quality of lettuce subjected to the different wash treatments was not significant at the end of 2 wk of storage.



Journal Cover

Microbe(s): Escherichia coli O157: H7


Survival of Escherichia coli O157:H7 was studied on strawberry, a fruit that is not usually washed during production, harvest, or postharvest handling. Two strains of the bacteria were tested separately on the fruit surface or injected into the fruit. Both strains of E. coli O157:H7 survived externally and internally at 23 C for 24 h and at 10, 5, and 20 C for 3 days. The largest reduction in bacterial population occurred at 20 C and on the fruit surface during refrigeration. In all experiments, the bacteria inside the fruit either survived as well as or better than bacteria on the surface, and ATCC 43895 frequently exhibited greater survival than did ATCC 35150. Two strains of E. coli also survived at 23 C on the surface and particularly inside strawberry fruit. Chemical agents in aqueous solution comprising NaOCl (100 and 200 ppm), Tween 80 (100 and 200 ppm), acetic acid (2 and 5%), Na3PO4 (2 and 5%), and H2O2 (1 and 3%) were studied for their effects on reduction of surface-inoculated (108 CFU/ml) E. coli O157:H7 populations on strawberry fruit. Dipping the inoculated fruit in water alone reduced the pathogen population about 0.8 log unit. None of the compounds with the exception of H2O2 exhibited more than a 2-log CFU/g reduction of the bacteria on the fruit surface. Three percent H2O2, the most effective chemical treatment, reduced the bacterial population on strawberries by about 2.2 log CFU/g.



Journal Cover

Microbe(s): Escherichia coli O157:H7


This study investigates the properties of electrolyzed oxidizing (EO) water for the inactivation of pathogen and to evaluate the chemically modified solutions possessing properties similar to EO water in killing Escherichia coli O157:H7. A five-strain cocktail (1010 CFU/ml) of E. coli O157:H7 was subjected to deionized water (control), EO water with 10 mg/liter residual chlorine (J.A.W-EO water), EO water with 56 mg/liter residual chlorine (ROX-EO water), and chemically modified solutions. Inactivation (8.88 log10 CFU/ml reduction) of E. coli O157:H7 occurred within 30 s after application of EO water and chemically modified solutions containing chlorine and 1% bromine. Iron was added to EO or chemically modified solutions to reduce oxidation reduction potential (ORP) readings and neutralizing buffer was added to neutralize chlorine. J.A.W-EO water with 100 mg/liter iron, acetic acid solution, and chemically modified solutions containing neutralizing buffer or 100 mg/liter iron were ineffective in reducing the bacteria population. ROX-EO water with 100 mg/liter iron was the only solution still effective in inactivation of E. coli O157:H7 and having high ORP readings regardless of residual chlorine. These results suggest that it is possible to simulate EO water by chemically modifying deionized water and ORP of the solution may be the primary factor affecting microbial inactivation.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes, Bacillus cereus


This study was undertaken to evaluate the efficacy of electrolyzed oxidizing (EO) and chemically modified water with properties similar to the EO water for inactivation of different types of foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes and Bacillus cereus). A five-strain cocktail of each microorganism was exposed to deionized water (control), EO water and chemically modified water. To evaluate the effect of individual properties (pH, oxidation-reduction potential (ORP) and residual chlorine) of treatment solutions on microbial inactivation, iron was added to reduce ORP readings and neutralizing buffer was added to neutralize chlorine. Inactivation of E. coli O157:H7 occurred within 30 s after application of JAW EO water with 10 mg/l residual chlorine and chemically modified solutions containing 13 mg/l residual chlorine. Inactivation of Gram-positive and -negative microorganisms occurred within 10 s after application of ROX EO water with 56 mg/l residual chlorine and chemically modified solutions containing 60 mg/l residual chlorine. B. cereus was more resistant to the treatments than E. coli O157:H7 and L. monocytogenes and only 3 log10 reductions were achieved after 10 s of ROX EO water treatment. B. cereus spores were the most resistant pathogen. However, more than 3 log10 reductions were achieved with 120-s EO water treatment.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes


The efficacy of electrolyzed oxidizing water for inactivating. Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes was evaluated. A five-strain mixture of E. coli O157:H7,S. enteritidis, or L. monocytogenes of approximately 108 CFU/ml was inoculated in 9 ml of electrolyzed oxidizing water (treatment) or 9 ml of sterile, deionized water (control) and incubated at 4 or 23 C for 0, 5, 10, and 15 min; at 35 C for 0, 2, 4, and 6 min; or at 45 C for 0, 1, 3, and 5 min. The surviving population of each pathogen at each sampling time was determined on tryptic soy agar. At 4 or 23 C, an exposure time of 5 min reduced the populations of all three pathogens in the treatment samples by approximately 7 log CFU/ml, with complete inactivation by 10 min of exposure. A reduction of 7 log CFU/ml in the levels of the three pathogens occurred in the treatment samples incubated for 1 min at 45 C or for 2 min at 35 C. The bacterial counts of all three pathogens in control samples remained the same throughout the incubation at all four temperatures. Results indicate that electrolyzed oxidizing water may be a useful disinfectant, but appropriate applications need to be validated.



Journal Cover

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes


One milliliter of culture containing a five-strain mixture of Escherichia coli O157:H7 (1010 CFU) was inoculated on a 100-cm2 area marked on unscarred cutting boards. Following inoculation, the boards were air-dried under a laminar flow hood for 1 h, immersed in 2 liters of electrolyzed oxidizing water or sterile deionized water at 23 C or 35 C for 10 or 20 min; 45 C for 5 or 10 min; or 55 C for 5 min. After each temperature-time combination, the surviving population of the pathogen on cutting boards and in soaking water was determined. Soaking of inoculated cutting boards in electrolyzed oxidizing water reduced E. coli O157:H7 populations by 5.0 log CFU/100 cm2 on cutting boards. However, immersion of cutting boards in deionized water decreased the pathogen count only by 1.0 to 1.5 log CFU/100 cm2. Treatment of cutting boards inoculated with Listeria monocytogenes in electrolyzed oxidizing water at selected temperature-time combinations (23 C for 20 min, 35 C for 10 min, and 45 C for 10 min) substantially reduced the populations of L. monocytogenes in comparison to the counts recovered from the boards immersed in deionized water. E. coli O157:H7 and L. monocytogenes were not detected in electrolyzed oxidizing water after soaking treatment, whereas the pathogens survived in the deionized water used for soaking the cutting boards. This study revealed that immersion of kitchen cutting boards in electrolyzed oxidizing water could be used as an effective method for inactivating foodborne pathogens on smooth, plastic cutting boards.